skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Clark, Logan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The relationship between Southern Hemisphere middle and high-latitude regions has made it possible to generate observationally-based Antarctic pressure reconstructions throughout the 20th century, even though routinely collected observations for this continent only began around 1957. While nearly all reconstructions inherently assume stability in these relationships through time and in the absence of direct observations, this stationarity constraint can be fully tested in a model setting. Seasonal pressure reconstructions based on the principal component regression (PCR) method spanning 1905–2013 are done entirely within the framework of the Community Atmospheric version 5 (CAM5) model in this study in order to evaluate this assumption, test the robustness of the PCR procedure for Antarctic pressure reconstructions and to evaluate the CAM5 model. Notably, the CAM5 reconstructions outperformed the observationally-based reconstruction in every season except the austral summer. Other tests indicate that relationships between Antarctic pressure and pressure across the Southern Hemisphere remain stable throughout the 20th century in CAM5. In contrast, 20th century reanalyses all display marked changes in mid-to-high latitude pressure relationships in the early 20th century. Overall, comparisons indicate both the CAM5 model and the pressure reconstructions evaluated here are reliable estimates of Antarctic pressure throughout the 20th century, with the largest differences between the two resulting from differences in the underlying reconstruction predictor networks and not from changes in the model experiments. 
    more » « less
  2. null (Ed.)
  3. Correlations in interacting many-body systems are key to the study of quantum matter. The complexity of the correlations typically grows quickly as the system evolves and thus presents a challenge for experimental characterization and intuitive understanding. In a strongly driven Bose-Einstein condensate, we observe the high-harmonic generation of matter-wave jets with complex correlations as a result of bosonic stimulation. Based on a pattern recognition scheme, we identify a pattern of correlations that reveals the underlying secondary scattering processes and higher-order correlations. We show that pattern recognition offers a versatile strategy to visualize and analyze the quantum dynamics of a many-body system. 
    more » « less
  4. Atom interferometers are powerful tools for both measurements in fundamental physics and inertial sensing applications. Their performance, however, has been limited by the available interrogation time of freely falling atoms in a gravitational field. By suspending the spatially separated atomic wave packets in a lattice formed by the mode of an optical cavity, we realize an interrogation time of 20 seconds. Our approach allows gravitational potentials to be measured by holding, rather than dropping, atoms. After seconds of hold time, gravitational potential energy differences from as little as micrometers of vertical separation generate megaradians of interferometer phase. This trapped geometry suppresses the phase variance due to vibrations by three to four orders of magnitude, overcoming the dominant noise source in atom-interferometric gravimeters. 
    more » « less